Ukrainian League Against Epilepsy

Epilepsy Center. Kyrylivska St, 103, Kyiv, UKRAINE, 02000

Today 6

Week 121

Month 6

 
Ю.А. Бабкина, к.мед.н., врач функциональной диагностики, Лужицкий медицинский центр, г. Любань (Польша). Научный сотрудник медицинского центра «НЕЙРОН», г. Харьков.babkina

 

Уважаемые коллеги, вашему вниманию представляется обзор статьи «How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms» авторов F. Nikbakht etal., опубликованная в издании Multiple Sclerosis and Related Disorders (2020; 46: 102535). Он будет интересен не только неврологам, но и врачам других специальностей, кратким изложением известных на текущий момент данных о пато­физиологическом воздействии COVID-19.

Коронавирус, возбудитель COVID-19, оказал влияние на многих людей по всему миру и в настоящее время представляет собой серьезную глобальную угрозу. COVID-19 впервые был заре­гистрирован в декабре 2019 года в Ухане, провинция Хубэй, Китай. В январе 2020 года Всемирная организация здравоохранения (ВОЗ) идентифицировала новый коронавирус 2, вызывающий ­тяжелый острый респираторный синдром (SARS-CoV-2). Согласно отчету ВОЗ от августа 2020 года, в 202 странах зафиксировано более 19 миллионов лабораторно подтвержденных случаев. На тот момент COVID-19 стал причиной более чем 700 тыс. смертей (Thompson, 2020).

Основные симптомы у инфицированных людей включают жар, сухой кашель, ломоту, боль, усталость, озноб, головную боль, анорексию и потерю запаха или вкуса. COVID-19 также может вызывать значимое поражение дыхательной и других систем; таких органов, как почки, печень и сердце, вплоть до полного нарушения их функций. Сердечно-сосудистые осложнения могут включать сердечную недостаточность, ­нарушение электрической активности сердца, нарушения свертываемости крови и острое повреждение миокарда. В частности, со стороны желудочно-пищеварительного тракта у пациентов отмечаются анорексия, тошнота, рвота, диарея и боль в животе, возможна паралитическая кишечная непроходимость (Guet al., 2020). Эти симптомы могут проявляться раньше, чем жар, боль и кашель.

У инфицированных SARS-CoV-2 неврологические симптомы могут отмечаться как самостоятельно, так и на фоне других симптомов. К специфическим неврологическим симптомам COVID-19 относят потерю обоняния и вкуса, мышечную слабость и боль, покалывание в руках и ногах, головокружение, делирий, ишемический и геморрагический инсульт и судороги.

Эпилепсия — одно из самых распространенных неврологических расстройств, чаще всего с длительным течением, которым страдают около 50 млн человек во всем мире. Точные механизмы, приводящие к припадкам, еще до конца не изучены. Однако к предполагаемым механизмам относят резкое увеличение возбудимости нейронов после дисбаланса функции ионного канала, увеличение содержания возбуждающих нейромедиаторов (глутамата и аспартата) и снижение уровня нейромедиатора γ-аминомасляной кислоты (ГАМК) (Riazi etal., 2010).

Другие причины эпилепсии включают такие острые метаболические нарушения, как гипо- или гипергликемия, электролитный дисбаланс, острое повреждение нейронов после инфекции и воспаления, инсульт, травмы головы, митохондриальная дисфункция, гипо­ксия и лихорадка. До сих пор было проведено всего несколько исследований с целью изучения основного механизма неврологических осложнений COVID-19, в частности судорог и эпилепсии.

F. Nikbakht et al. обсудили пять возможных механизмов эпилепсии, вызванной COVID-19. Как и все шесть предыдущих β-коронавирусов, COVID-19 имеет способность проникать в центральную нервную систему (ЦНС) и вызывать неврологические симптомы. Рецептор ангиотензинпревращающего фермента 2 (ACE2) обеспечивает путь проникновения коронавируса в клетки-хозяева человека. Эти рецепторы в ­основном находятся в стволе мозга и отвечают за регулирование сердечно-сосудистой и дыхательной функций. Как и при остром респираторном синдроме (SARS), и ближневосточном респираторном синдроме (MERS), возбудитель COVID-19 может проникать напрямую в мозг через обонятельный тракт без участия рецепторов ACE2, путем заражения сенсорных или моторных нейронов, либо с помощью механизмов антероградного транспорта, используя кинезин и динеин (Steardo et al., 2020).

После инвазии вирус вызывает реактивный астроглиоз и активирует микро­глию, запуская большой воспалительный каскад. Так, попадание вируса в ЦНС приводит к высвобождению провоспалительных цитокинов — фактора некроза опухоли α (ФНО-α), интерлейкинов 6 и 1β (ИЛ-6, ИЛ-1β); оксида азота, простагландина E2 и свободных радикалов, а также вызывает повышенную нервную возбудимость, судороги и смерть (Huang etal., 2020; Tufan etal., 2020). Воспалительные цитокины усиливают апоптоз и нейрональный некроз в ЦНС, особенно в различных частях гиппокампа; приводят к увеличению содержания глутамата и уменьшению уровня ГАМК в коре головного мозга и гиппокампе, что играет ключевую роль в эпилептическом патогенезе. Одним из наиболее вредных эффектов этих цитокинов является секреция нейротоксических соединений посредством аутокринных/паракринных механизмов. Эти цитокины увеличивают поступление кальция в нейроны через рецепторы α-амино-3-гидрокси-5-метил-4-изоксазолпропионовой кислоты (AMPA) и N-метил-D-аспартата (NMDA), тем самым увеличивая гипервозбудимость и вызывая гибель нейронов (Samuelsson etal., 2006; Rana and Musto, 2018).

ИЛ-1β экспрессируется в активной микро­глии и астроцитах, увеличивает концентрацию глутамата в синапсах, высвобождение глутамата из астроцитов и уменьшение его реабсорбции, что ­приводит к повышенной возбудимости ­нейронов (Alyu and Dikmen, 2017). Лабораторные и клинические наблюдения показали, что провоспалительные цито­кины играют важную роль в возникновении и поддержании эпилепсии. Также ИЛ-1β может вызывать судороги за счет увеличения количества субъединиц GluN2B в рецепторах NMDA на постсинаптических клетках (Viviani etal., 2003; Postnikova etal., 2017). Было показано, что патофизиологическая концентрация ИЛ-1β приводит к началу приступа и снижению уровня ГАМК (Roseti etal., 2015).

ФНО-α — еще один провоспалительный цитокин, высвобождаемый из активной микроглии и астроцитов. Он увеличивает высвобождение глутамата из глии и регулирует рецепторы AMPA (Stellwagen and Malenka, 2006). Гиперактивные рецепторы AMPA поглощают слишком много ионов кальция и вызывают нейрональную токсичность. Через механизм эндоцитоза ФНО-α не только повышает количество рецепторов глутамата, но также уменьшает количество рецепторов ГАМК, тем самым усиливая возбудимость нейронов (Stell­wagen etal., 2005; Galic etal., 2012).

ИЛ-6 — другой провоспалительный цитокин, обнаруживаемый в норме лишь в небольших количествах в ЦНС. Однако стимуляция астроцитов и микроглии, ­цитокины ФНО-α, ИЛ-1β, интерферон-γ и ИЛ-17 усиливают и увеличивают продукцию ИЛ-6 (Erta et al., 2012). Как показали исследования, ИЛ-6 снижает долго­срочную потенциацию и нейрогенез гиппокампа, тем самым помогая инициировать эпилепсию и увеличивать ее тяжесть (Levin and Godukhin, 2017).

Заражение ствола мозга возбудителем COVID-19 может затронуть дыхательные и сердечно-сосудистые регуляторные центры и усугубить дыхательную недостаточность, что приведет к тяжелой гипо­ксии. Некоторые данные ясно подтверждают, что острый респираторный дистресс-синдром и органная недостаточность являются конечным результатом цитокинового шторма при инфекции COVID-19 (Chen L. et al., 2020; Coperchini F. et al., 2020). Сочетание гипо­ксии с ранее существовавшим нейро­воспалением вызывает серьезные повреждения гиппокампа и коры головного мозга, что приводит к эпилептической активности нейронов (De Felice et al., 2020; Paniz-Mondolfi et al., 2020; Li et al., 2020; Lin et al., 2020).

В значительной степени ИЛ-6 и ФНО-α не только вырабатываются микроглией, но могут проникать в мозг посредством пассивной или активной передачи. Эндотелиальные клетки кровеносных сосудов играют важную роль в механизме проницаемости гематоэнцефалического барьера (ГЭБ). Инфекция COVID-19 вызывает повреждение ГЭБ, что серьезно нару­шает гомеостаз мозга и приводит к апоптозу и гибели нейронов. С другой стороны, разрушение ГЭБ влечет за собой миграцию клеток крови и белков, в частности альбумина, нарушает осмотический баланс ЦНС и вызывает судороги (Rana and Musto, 2018; Van Vliet etal., 2007).

Другими причинами нарушения ГЭБ и провоцирования судорог при COVID-19 являются лихорадка и гипертермия. Лабораторные исследования показывают, что высокие температуры (> 40 °C) пагубно влияют на различные клетки, особенно на метаболически активные клетки мозга, включая нейроны, микроглию, эндотелиальные и эпителиальные клетки. Повреждение мозга во время экстремальной гипертермии увеличивает острую активацию глиальных клеток и проницаемость ГЭБ (Kiyatkin and Sharma, 2009). У детей с фебрильными судорогами лихорадка не только повышает температуру мозга, но также вызывает высвобождение в нем медиаторов воспаления, особенно цитокинов, таких как ИЛ-1β. Высокий уровень воспалительных цитокинов был обнаружен в спинномозговой жидкости и/или плазме у детей с фебрильными судорогами. COVID-19 также может повлиять на вероятность фебрильных судорог, так как вызывает выработку ­воспалительных цитокинов в головном мозге детей. Согласно исследованиям, экспрессия ИЛ-1β в реактивных астроцитах сохраняется как минимум через 24 часа после фебрильных судорог. У пациентов, инфицированных COVID-19, наблюдаются нарушения свертывания крови, характеризующиеся удлиненным протромбиновым временем, повышенным уровнем D-димера и диффузной внутрисосудистой коагуляцией (Giannis et al., 2020; Levi et al., 2020; Connors and Levy, 2020). N. Tang et al. (2020) сообщили, что у 71,4 % умерших от COVID-19 и у 0,6 % переболевших были зафиксированы признаки диффузной внутрисосудистой коагуляци.

Несколько факторов могут играть роль в нарушениях свертывания крови у пациентов с COVID-19. Устойчивый воспалительный статус у пациентов с COVID-19 действует как важный стимул для каскада свертывания крови. А некоторые цитокины, включая ИЛ-6, активируют каскад свертывания и подавляют фибринолитическую систему. Такое повреждение эндо­телия легочных и периферических артерий вследствие прямой вирусной атаки может быть не менее важным фактором повышения свертываемости крови. Повреждение эндо­телиальных клеток может активировать систему коагуляции. Более того, иммунный ответ может быть усилен нарушениями свертывания крови. Эти два процесса могут действовать как порочный круг, отягчающий ситуацию. Что может ухудшить свер­тываемость крови появление антифосфолипидных антител (Tang etal., 2020; Zhang etal., 2020; Cao and Li, 2020).

Постишемические и инсультные приступы — одна из причин эпилепсии (Merkler etal., 2016). Когда происходит ­инсульт, судороги могут быть вызваны целым множеством факторов, включая гипо­ксию, нарушение обмена веществ, а также снижение или усиление перфузии крови. Острая ишемия тоже может провоцировать ранние приступы из-за увеличения внеклеточной концентрации глутамата, нарушения функции ионных каналов и повреждения ГЭБ. Механизмы, вовлеченные в поздние припадки, различаются и включают глиоз, хроническое воспаление, ангиогенез, апоп­тоз и гибель нейронов, нейрогенез, синап­тогенез и потерю синаптической пластичности (Merkler etal., 2016; Wang etal., 2018). При геморрагическом инсульте к повышенной возбудимости нейронов и судорогам могут привести отложения гемосидерина.

ГЭБ может разрушаться при повреждении эндотелиальных клеток, когда белки сыворотки попадают в ЦНС после инсульта. Например, альбумин связывается с рецепторами трансформирующего фактора роста β (ТФР-β) в астроцитах, и происходит активация сигнального пути ТФР-β (Zlo­kovic, 2008). Впоследствии начинается подавление калиевых каналов Kir4.1 и транспортера глутамата. Результатом этого события является увеличение содержания калия и глутамата в синаптической щели. Повышение уровня внеклеточного калия приводит к судорогам. Когда клетки микроглии и астроцитов активируются, проницаемость ГЭБ повышается за счет продукции провоспалительных цитокинов, таких как ИЛ-1β, ИЛ-6, ФНОα и ТФР-β. Этот цикл может усилить проявления эпилепсии после инсульта (daFonseca etal., 2014; Kim etal., 2012; Doyle etal., 2010).

Высокий уровень глутамата, высвобождаемый ишемическими или гипо­ксическими клетками во внеклеточное пространство, может активировать рецепторы AMPA и NMDA, что приводит к апоптозу или гибели нейронов (Prentice etal., 2015). ГАМК — главный нейро­медиатор нервной системы, и его ингибирование после инсульта провоцирует чрезмерную возбудимость нейронов. Исследования на животных продемонстрировали постишемическую энце­фалопатию при ишемии переднего мозга, что связано с повреждением ГАМК-ергической системы. Стриатум особен­но уязвим для преходящей ишемии переднего мозга. В дорсолатеральном полосатом теле наблюдается выраженный нейрональный некроз, связанный с заметным снижением синтеза ГАМК после глобальной ишемии (Lin etal., 2010). Также снижение количества рецепторов ГАМК может привести к повышенной возбудимости нейронных сетей и судорогам (Galanopoulou, 2008). Как показывают исследования, ишемическая гипоксия может иметь ключевое значе­ние в возникновении эпилепсии в зависимости от того, как долго она длится. Антагонист рецептора AMPA предотвра­щает длительную эпилепсию после гипоксии (Roel­cke etal., 2013; Yalçin etal., 1998).

При заражении SARS-CoV и тяжелом остром респираторном синдроме окис­лительный стресс играет важную роль. Он тесно связан с дисфункцией митохондрий, роль которых в патофизиологии COVID-19 подтверждена (Delgado-Roche and Mesta F., 2020; Fauci etal., 2020; Padhan etal., 2008; Zhang etal., 2020).

Воспалительные цитокины увеличивают продукцию активных форм кислорода (АФК) в митохондриях (Liet al., 2013). Некоторые воспалительные цитокины, такие как ФНО-α и ИЛ-6, характерные для инфекции коронавируса и обнаруженные в сыворотке при COVID-19, способствуют выработке митохондриальных АФК в клетке. Митохондрии — внутриклеточные орга­неллы с двумя мембранами, внутренней и внешней, которые играют важную роль в энергетическом гомеостазе. Помимо производства энергии, ­митохондрии выполняют множество функций, включая ­гомеостаз кальция, производство АФК, ­модуляцию нейротрансмиттеров в ЦНС и регуляцию апоптоза клеток (Rossi etal., 2018; Marland etal., 2016).

Между митохондриальной дисфункцией и эпилепсией существует взаимная причинно-следственная связь: с одной стороны, при большинстве типов эпилепсии происходит вторичное повреждение митохондрий, с другой — эти органеллы отве­чают за выработку энергии в клетках, что важно для нормальной ­нейрональной и синаптической передачи, в противном случае возникает аномальная активность и припадки. У пациентов с COVID-19 исследования ­выявили различные электролитные нарушения (Lippi etal., 2020; Mabillard and Sayer, 2020). Инфекция COVID-19 связана со снижением концентрации натрия, калия, магния и кальция в сыворотке крови, что приводит к гипо­натриемии, гипокалиемии, гипо­кальци­емии и гипомагниемии.

Эти нарушения, особенно гипокалиемия, могут иметь тяжелые клинические ­последствия для инфицирован­ного ­пациента. Гипокалиемия приводит к обострению респираторного дистресс-синдрома и острому поражению сердца (Huang etal., 2020; Guan etal., 2020; Li etal., 2020). SARS-CoV-2 связывается с рецепторами ACE2, возможно, снижая их экспрессию и тем самым повышая содержание ангиотензина II, который может увеличивать выведение калия почками, что в итоге приводит к гипокалиемии.

Повышенные концентрации ангиотензина II в плазме у пациентов с COVID-19 действуют как медиаторы острого повреждения легких, что ранее было ­подтверждено на животных моделях инфек­ции SARS-CoV. У ­пациентов с COVID-19 потенциальные факторы, ­усугубляющие электролитный дисбаланс, могут включать желудочно-­кишечные симпто­мы, такие как диарея и тошнота (Liu etal., 2020; Kuba etal., 2005; Pan etal., 2020).

Судороги являются наиболее важными клиническими симптомами электролитных нарушений и чаще встречаются у пациен­тов с гипонатриемией, гипокальциемией и гипомагниемией. В таких случаях успешное лечение припадков начинается с точной диагностики лежащих в основе электролитных нарушений (Cas­tilla-Guerra etal., 2006; Ropper etal., 2005). Раннее выявление и коррекция этих нарушений необходимы для конт­роля приступов и предотвращения необратимого повреждения головного мозга. Если нару­шение электролитного баланса сохраняется, применение только противоэпилептических препаратов неэффективно, и его недостаточно для конт­роля припад­ков. Лечение судорог, вызванных дисбалансом электролитов, определяется их первопричиной, и в большинстве случаев применения противоэпилептических препаратов не требуется, пока нарушение не будет устранено (Riggs, 2020; Beghi etal., 2010; Nardone etal., 2015).

На сегодня воздействие нового корона­вируса на различные органы до конца не изу­чено. До тех пор, пока не будет найдено эффек­тивное и подтвержденное тестированием лекарственное средство или вакцина, пони­мание механизма пато­генеза COVID-19, приводящего к отказу ­органов, поможет определить стратегии или варианты тера­певтического лече­ния инфек­ции. Вирус может вызывать сложные нарушения функционирования нервной ­системы, такие как судороги и эпилепсия. Деструктивные эффекты COVID-19 в ЦНС в основном являются результатом цитокинового шторма, в свою очередь вызванного либо проник­новением провоспалительных цитокинов с периферии в ЦНС, либо производством этих цитокинов активированной микроглией. Следовательно, вторичные судо­роги у пациентов с COVID-19 могут возникать после инсультов, при электролитном дисбалансе, повышенном окислительном стрессе и митохондриальной дисфункции. Поэтому необходимы дополнительные исследования, чтобы доказать точный механизм судорог у пациентов с COVID-19.

Соціальні мережі

instagram logo icon    facebook icon 33


Our contacts:

Tel: 38 (091) 309-2321, Fax: 38 (057) 738-2181

e-mail: adneuro1801@i.ua   

 2017 © Developed by - I.Hirman